Modeling Interfacial Tension in Liquid−Liquid Systems Containing Electrolytes
نویسندگان
چکیده
A comprehensive model has been developed for calculating the interfacial tension (σ) in liquid−liquid systems with or without electrolyte components. The model consists of an equation for computing the interfacial tension of two-liquidphase nonelectrolyte systems and an expression for the effect of the electrolyte concentration. The dependence of the interfacial tension on the electrolyte concentration was derived by combining the Gibbs equation with a modified Langmuir adsorption isotherm that represents the interfacial excess of the solute species. The Langmuir adsorption formalism was extended by introducing the effects of binary interactions between solute species (ions or molecules) on the interface. The equation for the interfacial tension of nonelectrolyte liquid−liquid systems was derived using a general thermodynamic framework that was empirically extended by introducing an effective interfacial area that is defined for each component and takes into account the effects of other components at the interface. The model was found to reproduce experimental data for a variety of liquid−liquid systems. In particular, the interfacial tension of ternary systems can be accurately predicted using parameters determined from only binary data. Furthermore, the interfacial tension model was coupled with a previously developed thermodynamic model to provide activity coefficients and equilibrium concentrations in coexisting liquid phases. This makes it possible to reproduce the effects of speciation and salting out or salting in. Because of the coupling of the thermodynamic model with interfacial tension calculations, the variation of σ with electrolyte concentration can be reasonably predicted even without introducing electrolytespecific parameters in the interfacial tension model. Thus, the model can be used to estimate the electrolyte effect on σ in the absence of experimental data. With regressed model parameters, the average deviations between the calculated results and experimental data were 0.50 mN·m−1 for 30 binary nonelectrolyte systems, 0.88 mN·m−1 for 23 ternary nonelectrolyte systems, and 0.16 mN·m−1 for 26 systems with ionic components.
منابع مشابه
Modeling of Pressure Dependence of Interfacial Tension Behaviors of Supercritical CO2 + Crude Oil Systems Using a Basic Parachor Expression
Parachor based expressions (basic and mechanistic) are often used to model the experimentally observed pressure dependence of interfacial tension (IFT) behaviors of complex supercritical carbon dioxide (sc-CO2) and crude oil mixtures at elevated temperatures. However, such modeling requires various input data (e.g. compositions and densities of the equilibrium liquid and vapor phases, and molec...
متن کاملModeling of liquid–liquid equilibria of aqueous alcohol + salt systems using amodified NRTL
The modified NRTL (m-NRTL) model is used to represent the excess Gibbs free energy of aqueous (alcohol + electrolyte) solutions. In this work, the m-NRTL model previously developed for representation of vapor-liquid equilibria for (polymer + salt + water) systems has been extended to represent liquid-liquid equilibria of (alcohol + salt + water) systems. The proposed extension is a modified of ...
متن کاملModeling the Surface Tension and the Interface of Ten Selected Liquid Mixtures: Correlation, Prediction, and the Influence of Using Partial Molar Volume
This work investigates the modeling of the surface tension and the interface of liquid mixtures. Nine binary liquid mixtures of (DMSO+alcohols), (2-Propanol+2,2,4-trimethylpentane), (Tetrahydrofuran+2-Propanol), (Tetrahydrofuran+2,2,4-trimethylpentane), and (ethano+glycerol) are considered. Additionally, one ternary liquid mixture of (Tetrahydrofuran+2-Propanol+2,2,4-trimethylpenta...
متن کاملExperimental Investigation of Flooding and Drop Size in a Kuhni Extraction Column
In this research, Sauter-mean drop diameters and the flooding behavior have been investigated experimentally in a pilot scale Kühni extraction column. The experiments were carried out in the absence of mass transfer for two different standard chemical systems. In the experiments operating parameters including agitation speed, flow rate of both liquid phases and interfacial tension have been stu...
متن کاملModified infiltration of solvated ions and ionic liquid in a nanoporous carbon
Infiltration of ions in a nanoporous carbon is responsive to the external electric field. If the liquid phase is an aqueous solution of electrolyte, the effective solid-liquid interfacial tension decreases as the voltage rises, similar to the electrowetting phenomenon at a large graphite surface. If the liquid phase is an ionic liquid, however, the effective interfacial tension increases with t...
متن کامل